CANDIDATE SOLUTIONS
 
Candidate   (dimensions mm, forces N)ABCDE
    trial wire diameter, d4.555.66.37.1
Compute corresponding spring index to satisfy chosen fatigue safety factor of 1.1, from ( a)
    Fut from Table 3 22000 26600 32800 40600 50600
    initial trial C7.57.57.57.57.5
    updating C from (a) : 4.695.676.998.6510.8
            C = Fut /1.1 ( 1430 Ks + 2310 Kh ) 4.335.436.928.8111.2
            where K's based on last C-update4.255.396.918.8311.3
    final converged maximum C4.225.386.918.8311.3
    D   = Cd19.026.938.755.680.0
    Di = D - d = ( C - 1)d > 15 ? too small21.933.149.373.1
    Do = D + d = ( C + 1)d < 0.96 * 65 = 62.4 ?- 31.944.361.9too big
Calculate corresponding number of turns to give required stiffness of 12 N/mm, from ( 2)
    na = Gd/8kC3 = 79E3*d/8*12*C3 -26.414.07.5-
Finalise solid and free lengths, and verify close-coiled assumption
    total turns   nt = na + 2     (Table 1) -28.416.09.5-
    solid length   Ls = ntd     (Table 1)-1429060-
    free length   Lo = Ls + δs-198146116-
    pitch   p = ( Lo - 2d )/na     (Table 1)-7.19.613.8-
    helix angle   α = arctan( p/π D)-4.8o4.5o4.5o-
Check buckling at maximum deflexion of 50 mm, assuming guided ends ( λ = 0.5 )
    λLo / c2 D     (absolutely stable if ≤ 1 )-1.400.720.40-
    δcrit     from ( 3a) (conditionally stable if > 50 mm)-48---
    conclusion re stability-unstableOKOK-
Check for probability of resonance, from ( 6)
    fund'l natural frequency,   fn = 358E3/naCD     Hz--9697-
    ratio natural/running frequencies = fn*60/400--14.414.6-
Check for yielding when solidified
    tensile ultimate,   Sut   (Table 2)   MPa--13301305-
    shear yield,   Sys = 0.48 Sut   (Table 2)   MPa--640625-
    solid stress,   τs = Ks 8 Fs C / π d2     MPa--403404-
 

Valid HTML 4.0!     Copyright 1999-2005 Douglas Wright
    last updated May 2005