
Squirrel Cage Motors 10

APPENDIX : INTEGRATION IN PRACTICE

Closed form evaluation of the integral  z = ∫A
B f(x) dx  is feasible only for a very limited class of simple applications; in

practice, numerical or graphical techniques must usually be employed. 

You might prepare a numerical integration procedure for your calculator or computer. Such a procedure could be based

on recursive subdivision using Simpson's method. To increase robustness it might embody the transformation   x = m y (

3 - y2 ) + n   where  m, n are constants chosen so that the newly introduced independent variable, y, assumes a minimum

value of -1 when x = A; and a maximum value of +1 when x = B;  ie  m = (B-A)/4;  n = (B +A)/2.  In terms of  y, the inte-

gral then assumes the form :-

               z   = 3m  ∫-1
1   ( 1 - y2 )    function  (    m y ( 3 - y2 ) + n   )   dy

The transformed integrand automatically vanishes at the two limits, so it does not need to be evaluated there and the

transformation avoids potential difficulties due to the fairly common occurrence of a singularity at either limit.  This

transformation is incorporated into the Romberg integration procedure in the program Motors. Lacking such procedures,

functions may be graphed and the following applied.

Graphical Integration

To evaluate graphically the integral 

(  i ) z = ∫A
B

 y dx                where  x and y may be temperature, or stress, or length, or whatever.

The  y-x relation is plotted as a Y-X graph, both X and Y being lengths in Figure 1 for example, drawn to known scales :

( ii ) Sx  = x/X  ( eg - units of 'x' per mm )   ; Sy = y/Y   ( units of 'y' per mm )

The following construction gives the integral, Z, also as a dimension, to some scale, Sz, as yet unknown.

Choose any line Q parallel to the Y-axis, and a pole P, with ordinate Yp and distant p (mm) from Q. In Figure 2, P has

been taken with the same ordinate as A, but this is not necessary.

Divide the curve into a number of vertical strips, Figure 3, and for each strip :

- select the mid-point

- construct a line parallel to the X-axis from the mid-point to the line Q and thence to the pole, P

- parallel to this polar line, draw a line across the strip from the similar line in the previous strip. 

This construction would start from any point such as B' having the same abscissa as one of the limits, and yields the Z-
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curve, from which the integral follows. Thus from similar triangles in Figure 4 :

( Y -Yp ) /p =   ( ( Z + δZ ) - Z ) / δX    ; δZ  =  ( ( Y -Yp ) / p ) δX                or, integrating

                    Z =   1/p (  ∫  Y dX  - Yp X  + constant ) - and using ( ii)

             z /Sz =   (   ∫  y dx  - yp x  -  zo ) /p SxSy  - where  zo is constant;  then setting . . . .

( iii)                             Sz =    p Sx Sy      (  mm * ( units of x per mm )* ( units of y per mm ) )            . . . . leads to

( iv)                       ∫  y dx =     z   +  zo  +  ypx        - which, with limits, yields

                            ∫A
By dx =     zB  -  zA  +  yp (  xB  - xA )   . . . . the desired result.

If P is chosen at Y = 0, then the last term of ( iv) vanishes and ( i) is satisfied identically. If this be the case, and further-

more the integral is known to vanish at some point C, then the plot of the integral may be completed by the addition of

the X-axis as shown in Figure 5. But this is not always immediately possible - sometimes a second integration is neces-

sary to simultaneously establish two integration constants;  the closed form integration of the simple beam's elastic curve

is a case in point. If Yp<> 0 then the integral must be reckoned from the inclined line inferred by (iv) and indicated in

Figure 6.

EXAMPLE 1      A load is characterised by constant, linear and

quadratic components of 55, 80 and 60 Nm respectively, at 1500

rev/min. The load's inertia is 25 kg.m2 and it is driven directly

by a now superseded ASEA squirrel cage motor, type MBN 200

L. Estimate the acceleration time graphically. 

The motor and load torques are plotted against speed, Figure 1,

using a speed scale of :

Sn     = 25 (Hz) / 47 (mm)

The net torque is computed at various speeds and its reciprocal

plotted, Figure 2, with a scale of :

ST     = 0.01 (Nm)-1  / 23 (mm)

A pole, P, and reference line, Q, are conveniently selected on

Figure 2, with pole distance p  = 16 mm. 

The integral is then drawn, Figure 3, whose value up to running

speed is measured as  Zr   =  26 mm.

The acceleration time is therefore :

∆t = 2π J ∫0
nr ( 1/Tnet ) dn   =    2π J  zr 

         =   2π J ( Sz  Zr   )    =     2π J ( p Sn  ST   ) Zr
= 2π ( 25+0.35 ) 16 ( 25 / 47 ) ( 0.01 / 23 ) 26  *  1

                rad   kg m2   mm     rev          1             mm   N s2

                         rev                           s mm   Nm mm              kg m

=   15  s

This value is comparable with the period calculated by the program Motors, though drawing inaccuracies become rela-

tively large as the running speed is approached, and the program is based upon current motor characteristics.

Note that the Z = 0 axis is horizontal here as the pole is selected on the zero-ordinate axis. 

EXAMPLE  2      Determine graphically the maximum

deflection of the steel shaft illustrated.

Static analysis yields the bending moment diagram of

Figure 1. Preparing the M/EI diagram :

EIABC = ( π /64 ) * 0.0304 * 207e9 =   8230 Nm2

EICD = ( π/64 ) * 0.0404 * 207e9 = 26012 Nm2

EIDE = ( π /64 ) * 0.0364 * 207e9 = 17067 Nm2
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Hence the M/EI diagram is plotted, Figure 2, to scales :

Sx = 200 ( mm ) / 48 ( mm ) = 4.17  mm / mm

SM/EI = 40 ( mrad/m )/15 ( mm ) = 2.67 mrad/m.mm

The pole Pθ is selected at zero ordinate and at distance pθ = 11 mm

as shown in Figure 2. Graphical integration then follows, yielding

the slope curve ( θ-x : Figure 3 ) to a scale, from ( iii) of :

Sθ = 11 (mm)*4.17*2.67 (mrad/m.mm) =  122 mrad / mm

Although the zero axis of the slope curve is undetermined at this

stage, it is known to be horizontal since the pole had been chosen

at zero ordinate in Figure 2. Integration of the slope yields the

deflection, v, so a pole Pv  is chosen at a distance pv = 9 mm in

Figure 3, and the v-x curve constructed, Figure 4, whose scale,

from ( iii ) is : 

Sv  =  9 ( mm ) * 4.17 * 122  ( mrad / mm )  =  4.59 mm/mm

Since the ordinate of the pole was not zero in Figure 3, the v = 0

axis will be inclined. It is known that there can be no deflection of

the shaft supports, A & E, so the line a-e must represent the unde-

flected axis. A line parallel to a-e and tangent to the curve identi-

fies the maximum deflection, which occurs at the point g. As this

point is also the point of zero slope, the zero axis in Figure 3 can

now be defined from the v-x curve.

From the deflection curve Figure 4 the scaled maximum deflection

is measured as  Vmax = 11 mm. 

The maximum deflection is therefore :        

vmax = 11 ( mm ) * 4.59 ( mm / mm )    =    50 mm

In this example, two integrations are necessary before any integration constants can be evaluated. Analytic approaches

to the bending of simply supported beams demonstrate this same necessity.

Accuracy will obviously be improved by graphs larger than the above, and by measurements better than to the nearest

millimetre. 


