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APPENDIX A :  Continued Fractions and Padé Approximations

Truncating infinite power series in order to use the resulting polynomials as approximating functions is a well known

technique. While some infinite series lend themselves to this, others do not - needing many terms and significant com-

puting time to reach the desired accuracy. Some may indeed diverge. It is useful to realise that infinite series are not the

only bases for numerical approximations, and it is for this reason that we now introduce the topic of continued fractions

which often provide a much more efficient approximation basis than series. Continued fractions and power series are

analogous to one another ( compare ( iii), ( iv) below ). Padé approximations are truncations of continued fractions, in

the same way as polynomials are truncations of infinite power series. 

The concept of a ‘convergent’ arises from the study of continued fractions. Convergents find many applications - notably

in finite elements - however their immediate relevance is as the basis of a procedure for selecting gear tooth numbers

from a limited range to approximate irrational speed ratios. This procedure is carried out mechanistically however its

grounding in convergents and continued fractions is reason enough to introduce these latter at this juncture.

We show, for interest, how a continued fraction may be derived from a power series, and the advantages of the resulting

Padé expression over the corresponding polynomial as an approximation for a particular function. The reader is referred

to Wall HS, Continued Fractions, van Nostrand 1948, for further details. 

A typical example of the advantages of Padé approximations is the following.

The real-time dynamic simulation of the air-operated brakes of an ore train consisting of hundreds of cars requires thou-

sands of iterations over the whole train. During each iteration the compressible flow function  { p-2/γ - p- (1+1/γ )  has to

be evaluated a number of times over each car to determine the flows through the various pipes and brake cylinder

restrictions in the car - p being the variable pressure ratio across a restriction ( 1 ≤ p ≤ pcrit ), and γ the constant ratio of

specific heats for air. The flow function is plotted here.

The two exponentiations in the many functional evaluations

took up such an inordinate amount of computing time that

real-time simulation was jeopardised. To circumvent this the

flow function was approximated by polynomials - three

were required -  these weren’t particularly accurate but

more significantly they gave rise to further computing con-

vergence problems due to their piecewise nature.

A much superior approximation applicable over the whole

p-range is of the form ( p -1 )( a +b.p )/( 1 +c.p ) in which a, b & c are carefully chosen constants. This is a Padé approxi-

mation and is indistinguishable from the the correct function at the scale of the plot - the accuracy of the approximation

is for the most part within 0.01%, which is much superior to the polynomials.

In the context of gears, the foregoing expressions ( 18) ( 22) for tooth geometry factors are further examples where ratios

of polynomials may be set up as Padé approximations to functions - in this case derived from finite element and photoe-

lastic analyses. 

A function of the single variable x may be written in the various forms :-

( i ) f ( x ) = a1 x  + a2 x2  + a3 x3  + a4 x4  +  . . . . ai  constant

( ii) =  x ( a1  + x ( a2  + x ( a3  + x ( a4  +  . . . . ))))

( iii) = c1 x * ( 1  + c2 x * ( 1 + c3 x * ( 1 + c4 x * ( 1  +  . . . . )))) ci  constant

( iv) = b1 x /( 1  + b2 x /( 1 + b3 x /( 1 + b4 x /( 1  +  . . . . )))) bi  constant

( v ) =                    b1 x                                             
1  +                     b2 x                                  

1  +                     b3 x                      
1  +                     b4 x          

1  +  . . . .
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Form ( i)  is the standard infinite power series representation ( neglecting any constant term) which must be truncated

when used for computations - in which case it is often expressed more conveniently as ( ii). Form (iii) is an alternate rep-

resentation in which the c-coefficients may easily be derived from the a-coefficients; this form is included here only to

show the similarity between the power series and the continued fraction (iv). Thus the multiplications which appear in

the power series ( iii) are replaced by divisions in the continued fraction ( iv), which is often seen in expanded form (  v).

If we set b4 = 0 in ( v), then the continued fraction is truncated after the third term - this is referred to as the third conver-

gent :-   C3 =  b1 x ( 1  + b3 x ) / (  1  + ( b2 + b3 ) x )   ≡  A3 / B3   and demonstrates the general form of the n'th conver-

gent as a quotient between a numerator, An, and a denominator, Bn, both of which are polynomials. The convergent is

an approximation of the original function - referred to as a Padé approximation.

A tabular procedure, involving only two simple recursive operations, may be used to derive the b-coefficients from the

a-coefficients; that is to derive the continued fraction from the power series, since the latter approximations are widely

available. The technique is exemplified below for a particular function, the natural logarithm, which is first expressed as

an infinite power series of which six terms only ( for example ) are considered :-

f ( x )    =     ln ( 1 + x ) =    x   - x2/2   + x3/3   - x4/4   + x5/5   - x6/6   +     etc.

These a-coefficients are entered into the second row of the table below, the first row of which is a seed. Operations on

succeeding rows are as follows.

An odd row is formed by dividing the preceding even row by its leading ( leftmost ) term - this term

becoming the latest b-coefficient.

An even row is formed by subtracting terms in the preceding odd row from terms in the odd row

before that, and moving the terms one column leftwards when entering them into the even row.

   1 1 0 0 0 0 0
   2 1 -1/2 1/3 -1/4 1/5 -1/6

3 b1 = 1 1 -1/2 1/3 -1/4 1/5 -1/6
4 1/2 -1/3 1/4 -1/5 1/6

   5 b2 = 1/2 1 -2/3 1/2 -2/5 1/3
   6 1/6 -1/6 3/20 -2/15

   7 b3 = 1/6 1 -1 9/10 -4/5
   8 1/3 -2/5 2/5

   9 b4 = 1/3 1 -6/5 6/5
10 1/5 -3/10

11 b5 = 1/5 1 -3/2
12 3/10

13 b6 = 3/10 1 etc

Recurrence relations for the numerator ( An) and denominator ( Bn) of the n'th convergent are as follows :-

A0 =   0 B0 =   1

A1 =   x b1 =  x B1 =   1

A2 =   A1 + x b2 A0 =  x B2 =   B1  + x b2 B0 =  1  + x/2

A3 =   A2 + x b3 A1 =  x  + x2/6 B3 =   B2  + x b3 B1 =  1  + 2x/3

A4 =   A3 + x b4 A2 =  x  + x2/2 B4 =   B3  + x b4 B2 =  1  + x  + x2/6

A5 =   A4 + x b5 A3 =  x  + 7x2/10  + x3/30 B5 =   B4  + x b5 B3 =  1  + 6x/5  + 3x2/10

A6 =   A5 + x b6 A4 =  x  + x2  + 11 x3/60 B6 =   B5  + x b6 B4 =  1  + 3x/2  + 3x2/5  + x3/20

etc etc

The convergents (Cn ) are finally expressed as ratios of polynomials. Approximations calculated therefrom, for some rep-

resentative values of x, are tabulated :-

Trial variable : x -1 1 2 5

Correct value : ln ( 1 + x ) - ∞ 0.6931 1.0986 1.7918

Trunc. series : x   - x2/2   + x3/3   - x4/4   + x5/5   - x6/6 -2.1167 0.9500 15.73 3107.1

C1 =   A1 /B1 =  x -1 1 2 5
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C2 =   A2 /B2 =  2 x / ( 2 + x ) -2 0.6667 1 1.4286

C3 =   A3 /B3 =  x ( 6 + x ) / ( 6 + 4 x ) -2.5 0.7 1.1429 2.1154

C4 =   A4 /B4 =  x ( 6 + 3 x )/( 6 + 6 x + x2 ) -3 0.6923 1.0909 1.7213

C5 =   A5 /B5 =  x ( 30 + 21 x + x2 )/( 30 + 36 x + 9 x2 ) -3.3333 0.6933 1.1014 1.8391

C6 =   A6 /B6 =  x ( 60 + 60 x + 11 x2 )/( 60 + 90 x + 36 x2 + 3 x3 ) -3.6667 0.6931 1.0980 1.7787

 etc.

This exemplifies the superiority of an approximation based on a continued fraction over one based on a power series -

for this particular function at least. It should be noted how successive “convergents” are alternately greater and less than

the correct value ( except for the infinite case ), and converge upon it - hence their name. 

The ability of continued fractions to identify simple ratio approximations, may be put to use for deriving gear trains for

otherwise awkward ratios. The technique used is simpler than the above and is best shown by example.  Suppose we

require a ratio of 0.3711, correct to the fourth significant figure. We first express the fraction rationally -  3711 / 10000 -

then factorise both numerator and denominator in an attempt to implement a compound train -  3 * 1237 / ( 2 * 5)4 -

which gets us nowhere as 1237 is prime and far too large for a practical gear; we will have to use a simpler approxima-

tion. An extended division is therefore carried out below; initially dividing the numerator into the denominator and

thereafter dividing the remainder into the previous divisor. The quotients thus found ( ie. the  bn ) form a continued frac-

tion ( of form different to ( v)), whose convergents yield approximations to the original fraction.

3711 ) 10000 (  2 ≡ b1
  7422

  2578  ) 3711  (  1 ≡ b2 1                                    C4   = 1                           =   10 / 27
2578 2  +   1                         2  +   1            

1133  )2578  (  2 ≡ b3           1  +   1                                  1  +   1           
2266         2  +   1                                            2  +   1  

  312  )1133  (  3 ≡ b4       3  +   1                                                3
  936                            1  +   1                         

  197  )312  (  1 ≡ b5                                      1  +   1                                              
197                                                1  +   1                         

115  ) 197  (  1 ≡ b6                                               2  +   1                         
115                                                                    2  +   1                 

  82  ) 115  (  1 ≡ b7                                                           etc
  82

  33  ) 82  (  2 ≡ b8
66

16  ) 33  (  2 ≡ b9
32   etc

The convergents may be found as C4 above - or by using the scheme below, in which C0  is a seed, C1 is the reciprocal of

b1, and thereafter the numerator and denominator follow from the same recurrence relation : An = bnAn-1 +An-2;  Bn =

bnBn-1 +Bn-2.  The seventh convergent would evidently give the desired results -

Conv'gt order, n 0 1 2 3 4 5 6 7 8 9

Quotient, bn - 2 1 2 3 1 1 1 2 2

Numerator, An 0 1 1 3 10 13 23 36 95 226
Denominator, Bn 1        b1=2 3 8 27 35 62 97 256 609

Cn = An /Bn - 0.5 0.333 0.375 0.3704 0.37143 0.37097 0.37113 0.37109 0.37110

Proportional error    - -3.5e-1 1.0e-1 -1.1e-2 2.0e-3 -8.9e-4 3.6e-4 -9.2e-5 1.7e-5 -4.4e-7

but it is impractical since 97 is prime and unavailable in our selection of change wheels. However the eighth is appropri-

ate as  95/256 =  5 * 19/28, and a compound train of 19/32 and 20/32 could be used.

Since all convergents are approximations to the same target value, their combinations may be more suitable than the

convergents themselves - eg.  ( C8 +C6 )/2 = 59/159 = 0.3711, and so on.

Admittedly, this technique has been largely superseded by cut-and-try methods on a computer.
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APPENDIX B : Geometry of the Involute Gear Tooth
The equations which describe the profile of a rack-generated gear tooth, including both the involute and the fillet tro-

choid, are now derived. These are useful not only for power transmission gearing, but also for hydrostatic power trans-

formation in gear pumps and so on, where fluid sealing and inter-tooth volume are important. 

Coordinates of a Point on the Rolling Rack   Any point such as Q, Fig B-1,  is defined by coordinates ( u, v ) on the rack

whose reference point, O, is offset by the profile shift, s, from the gear rolling circle at P.  Thus for the fillet centre of

Figure D :-

( i ) vC = e   –  b ; uC = h   +  e sec α   –  vC  tan α 

It is required to determine the location of the Q relative to the gear, after a roll angle, φ, is undergone. 

In Fig B-2, the coordinates ( X, Y ) of the point with respect to the gear centre are :

X = R φ   +  u               ;  R = z / 2               z being the number of teeth on the gear, and

Y = R   +  s   +  v         which is constant

Transforming these to axes ( x, y ) fixed to the gear, Fig B-3, they become :- 

( ii ) x = r  sin (  θ –  φ ) = X cos φ   –  Y sin φ = ( R φ  + u ) cos φ   –   ( R  + s  + v  ) sin φ

y = r  cos (  θ –  φ ) = X sin φ   +  Y cos φ = ( R φ  + u ) sin φ   +  ( R  + s  + v  ) cos φ

So, the system parameters ( α, a, b, e and h ) having been laid down, and the gear parameters ( R and s ) specified, the

coordinates of any point ( u, v ) may be found from ( ii) for any roll angle, φ.

The Involute Flank

An involute is generated most simply by a point attached to a taught cord which unwinds from a base circle of radius

Ro = R cos α,  as shown in Fig B-4.

The polar coordinates of a point on the profile corresponding to the generation angle  ψ, are :-

( iii ) r = Ro √ (  1   +  ψ 2 ) ; θ = γ   –  ψ   +  arctan ψ 

With the rack in the symmetric position ( φ = 0 ), the cord generator must be inclined at α to the horizontal, Fig B-5, since

it is normal to the non-rotated rack at the contact point. It follows that the relation between the generation angle ( ψ ) and

the rack roll angle ( φ ) is :-
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( iv ) ψ = φ   +  α   + γ

In order to determine the tooth constant half-angle, γ, the Cartesian coordinates of the contact point, calculated from (iii)

in the symmetric position with  ψ  = α + γ, are inserted into the equation for the rack flank derived from the geometry of

Figure D as  :   x  = h  + (  R   +  s  –  y  ) tan α. This yields the necessity :-

( v ) γ = (  h   +  s tan α  ) / R   +  inv α  ;  inv α ≡    tan α   –  α     . . . . the involute function

Checking for tip-pointing. The maximum generation angle, at the addendum circle, is, from ( iii) :-

( vi ) ψmax = √ (  ( ra / Ro )2  –  1 ) ; ra  = R   +  s   +  a    . . . . the addendum radius

The teeth are pointed if the corresponding  θmax <= 0, due in turn to the profile shift exceeding some critical shi  which

may be found, from ( iii) and ( v), to be :-

( vii ) shi = (   R (   ψmax   –   arctan ψmax   –  inv α  )   –  h  )  cot α
noting that this must be solved by trial, since ψmax  is a function of shi here, via ( vi).

On the other hand, the minimum generation angle, ψmin, corresponds to the tangent point T1 being tangent also to the

involute, Fig B-5, provided the tooth is not undercut, that is provided that T1 lies outside the base circle since the invo-

lute is not defined inside this circle. Comparing the ordinates of the fillet centre, C, with respect to the involute and to

the rack :-

yC = Ro cos α   +  (  Ro ψmin   +   e  ) sin α    = R   +  s   –  b   +  e from which 

(viii ) ψmin = tan α    +  (   s   +  e (  1  –  sin α )   –  b  ) / Ro sin α 

and the corresponding lower limit for the trochoid, φmin, follows from ( iv).

Setting  ψmin = 0     in ( viii) gives the critical profile shift, slo , below which undercutting occurs, thus :-

( ix ) slo = b   –   R sin2α   –  e (  1 –  sin α )

The Trochoidal Fillet

It may be appreciated from the sketches of tooth generation that the rack radius scours out the trochoidal tooth fillet,

prior to the involute tooth flank being formed by the straight side of the rack. If C is the centre of the fillet circle, Fig B-6,

then the coordinates of the corresponding point on the trochoidal fillet envelope are, from the geometry of Fig B-7 & ( ii):

( x ) x = xC   +  e dy/ds = λ ( R φ  + uC ) cos φ   –   ( R  + λ ( s  + vC ) ) sin φ ( uC , vC ) from ( i)

y = yC   –   e dx/ds = λ ( R φ  + uC ) sin φ   +  ( R  + λ ( s  + vC ) ) cos φ
where             λ = 1   + e / √(  ( R φ  + uC )2   +  ( s  + vC  )2  )

The roll angle which defines the upper limit of the trochoid ( φmax ) corresponds to the point T2, Figure D, lying on the

dedendum circle, radius  rb  =  R  +  s  –  b. Inserting  coordinates of T2 into ( ii) leads to :-

( xi ) φmax = – uT2 / R = –  (   h   +  e sec α   +  (  b  –  e ) tan α  ) / R

Undercutting

If undercutting is indicated by ( ix), then the intersection between involute and trochoid must be found by simultaneous

solution of the intersection coordinates, via ( iii) at ψmin for the involute, and ( x) at φmin for the trochoid. Note that  φmin
and  ψmin are not interrelated through ( iv) in this instance.

Calculation Sequence

Given the system parameters  (  α,  a,  b,  e,  h  );  compute coordinates of C from ( i).

Given the gear parameters  (  R,  s  ); compute Ro,  slo and shi via ( ix) and ( vii) respectively.

Set up the limits for the various profile segments :-

If  s < slo  then the tooth is undercut; calculate φmin  from ( x) and ψmin from ( iii) simultaneously

else determine  ψmin  from ( viii) and corresponding φmin from ( iv) 

If  s >= shi   then the tooth is pointed; calculate ψmax from ( iii) corresponding to  θ = 0

else determine ψmax  from ( vi) 

Ascertain  φmax  from ( xi)

Compute the various profile segments :-

The dedendum circle, radius rb, from the tooth boundary at  θ = π / z, to the start of the trochoid; the trochoid

from  φmax  to φmin;  the involute from ψmin  to  ψmax;  and finally, if not pointed, the addendum circle, radius

ra,  to  θ = 0.


