EXAMPLE

Repeat the preceding example if the mechanism is imperfect, the imperfection being characterised by an initial out- of- straightness   θo when the springs are free.

 
The analysis is similar to the above except that the free position is defined by   θ =   θo   rather than by   θ = 0.   So, as the initial deflections must increase :
          δ1   =   2b [ ( cosθ + α sinθ ) - ( cosθo + α sinθo ) ]   ;       |θ| ≥ |θo|
          δ2   =   2b [ ( cosθ - α sinθ ) - ( cosθo - α sinθo ) ]
          y - yo   =   4b ( cosθ - cosθo )

For the system therefore - normalising and differentiating as before :-
        U   =   Σ k δ2/2 + P ( y - yo )
        u   =   U/8kb2   =   1/2 [ ( cosθ - cosθo )2 + α2 ( sinθ - sinθo )2 ] + p ( cosθ - cosθo )
( C)       u'   =   ( cosθo - cosθ ) sinθ + α2 ( sinθ - sinθo ) cosθ - p sinθ
( D)       u"   =   ( cosθo cosθ - cos2θ ) + α2 ( sinθo sinθ + cos2θ ) - p cosθ

The equilibrium path, from ( 1a) and ( C) is evidently : <
( E)       p   =   cosθo - cosθ + α2 ( 1 - sinθo / sinθ ) cosθ   ;       |θ| ≥ |θo|
                  which is plotted below for the same three mechanism proportions as previously, for the perfect case ( θo = 0 ), and for positive and negative imperfections   |θo| = 5o and 10o.
example D imperfect behaviour

Considering stability, inserting ( E) into ( D) yields :-
        u"   =   sin2θ [ 1 + α2 ( sinθo / sin3θ - 1 ) ]

Thus, for the positive branches, stability is lost if
( F)       u"   ≤   0     ie. if       sinθ   ≥   [ α2 sinθo / ( α2 - 1) ]1/3
                  and can only occur if   α > 1; the corresponding maximum load capacity   p* from ( F) being :
        p*   =   cosθo + [ ( α2 - 1 )2/3 - ( α2 sinθo )2/3 ]3/2   ;       α > 1
Some values of   p* are shown above for   α = 2.




Valid HTML 4.0!     Copyright 1999-2005 Douglas Wright
    last updated May 2005