example on long shoes fig A

EXAMPLE

The two shoes of the internal brake are identical. The lining is 40 mm wide and the coefficient of friction is estimated to be 0.35. The brake is hydraulically operated - the maximum available hydraulic pressure is 8 MPa, and the piston diameters are 18 and 10 mm for left and right shoes respectively.
Find the torque capacity of the brake if the lining mean pressure is limited to 400 kPa.
What are the corresponding bearing reactions and brake sensitivity ?

common shoe geometry
inclination of x-axis to vertical, φ = arctan 30/72 = 22.6o
P-inclination   θP = 90 - φ = 67.4o
lining limits     θ1 = 45 - φ = 22.4o ;       θ2 = 180 - 35 - φ = 122.4o
from ( 10)         Is = 1.460   ;       Iss = 1.275   ;       Isc = 0.284
                            OH = a = √ ( 722 + 30 2 ) = 78 mm   ;       a/r = 0.78
from ( 6b)         m = ( 1/μ) ( a/r) ( Iss /Is ) = 1.946       and       n = 1 - ( a/r) ( Isc /Is ) = 0.848
 
individual shoe parameters
example pressure limits As the hydraulic actuation pressure rises so does the mean pressure on each lining. It is not clear which pressure bound will limit the brake's performance - the hydraulic pressure or the mean pressure on left or right lining - so evaluate   pm on basis of a convenient reference hydraulic pressure of 1 MPa say, then scale as necessary.
The left column of figures below for each shoe is based on this reference; the right column comprises the scaled values.
Results are given at length to facilitate checking; two figures at most are significant.
                    LEFT SHOE RIGHT SHOE  
      Shoes are internal so   Δ = -1   trailing so   δ = +1     leading so   δ = -1    
      P   =   ( pA )hydraulic   255     1858     79     573   N
      M   =   Pe   { e = 75+72 mm }   37.4     273     11.6     84   Nm
  (12)   λ   =   M/brake actuation (pressure)   37.4       11.6     Nm/MPa
  ( 6b)   No   =   M/( μrIs ( m - δΔn ))   262     1912     206     1503   N
  ( 5b)   pmax   =   No /wr   65.5     478     51.5     376   kPa
**   ( 9)   pm   =   pmax Is /( θ2 - θ1 )   54.8     400     43.1     314   kPa
  ( 5b)   Fx   =   No ( ΔIsc - δμIss )   -191     -1396     33     244   N
  ( 5b)   Fy   =   No ( δμIsc + ΔIss )   -308     -2248     -283     -2065   N
  ( 5b)   T   =   μrIsNo   13.4     98     10.5     77   Nm
  ( 8)   η   =   1/( m - δΔn )   0.358   0.358   0.911   0.911  
  ( 8)   S   =   m/( m - δΔn )   0.696   0.696   1.772   1.772  

** On the basis of 1 MPa hydraulic pressure, the greater mean lining pressure is   54.8 kPa, so a hydraulic pressure of   1 x 400/54.8 = 7.30 MPa will correspond to the maximum allowable lining pressure and hence to maximum torque capacity. The hydraulic pressure capacity is adequate, ie. torque capacity is not limited by it, and a relief valve will be necessary in the circuit, set at 7.3 MPa, to ensure that the lining pressure does not exceed 400 kPa. Multiplying results in the left column for each shoe by 7.3 gives the final values in the right column - though the mechanical advantage and sensitivity are not affected by the actuation.

The mechanical advantage of the brake - the overall transformation of pressure to braking torque - is :-
            ηo   =   13.4 +10.5   =   23.9 Nm/MPa       [ ie. ( 98 +77 ) /7.3 Nm/MPa ]
In this problem the actuating linkage factors   λ represent (brake actuation pressure)- to- (shoe actuation moment) transformations ( Nm/MPa), so from ( 13) the brake overall sensitivity is :
            So   =   Σ ληS / Σ λη   =   ( 37.4x0.358x0.696 + 11.6x0.911x1.772 )/( 37.4x0.358 + 11.6x0.911 )   =   1.171 example free bodies

Hinge and drum shaft reactions may be found from free bodies complete with the shoe/drum contacts calculated above from ( 5b). Torques are not shown as only force equilibrium is being considered. Here the contact   Fx, Fy are drawn on the shoes in their correct senses from above; the reactions to these appear on the drum free body.

For force equilibrium of these free bodies :
Left   :   ΣFx   =   RHx - 1396 + 1858 sinφ   =   0;       RHx   =   681  
  ΣFy   =   RHy - 2248 + 1858 cosφ   =   0;       RHy   =   533         RH   =   865   N   left
Right   :   ΣFx   =   RHx +   244 + 573 sinφ   =   0;       RHx   =   -464  
  ΣFy   =   RHy - 2065 + 573 cosφ   =   0;       RHy   =   1536         RH   =   1605   N   right
Drum   :   ΣFv   =   ROv   + ( 1396-244) cosφ   - ( 2248+2065) sinφ     =     0 ;       ROv   =   -595  
  ΣFh   =   ROh   + ( 2065-2248) cosφ   - ( 1396+244) sinφ     =     0 ;       ROh   =   -800         RO   =   997 N

summary
  Actuating pressure   :   7.3MPa           Braking torque   :   175Nm
  Sensitivity   :   1.17             Drum shaft reaction   :   997N
  Shoe hinge reactions   :   865 N (left),   1605 N (right)

The Macintosh program   Brakes analyses twin rigid shoe brakes in this manner - the reader may refer to the dialogue corresponding to this example.
 


Valid HTML 4.0!     Copyright 1999-2005 Douglas Wright
    last updated May 2005